SWP (Systematic Withdrawal Plan) calculator app Python

SWP (Systematic Withdrawal Plan) calculator app

SWP (Systematic Withdrawal Plan) calculator app

Creating a simple SWP (Systematic Withdrawal Plan) calculator app involves building a user interface where users can input their initial investment, withdrawal amount, frequency, expected rate of return, and duration.The app will then calculate the remaining balance over time.

Below is an example of how you can create a basic SWP calculator app using Python with the Tkinter library for the GUI.

import tkinter as tk
from tkinter import messagebox

# Function to calculate SWP
def calculate_swp():
 try:
 initial_amount = float(initial_amount_entry.get())
 withdrawal_amount = float(withdrawal_amount_entry.get())
 rate_of_return = float(rate_of_return_entry.get()) / 100
 frequency = frequency_var.get()
 duration = int(duration_entry.get())

# Convert duration to months if years are selected
 if frequency == “Yearly”:
 duration *= 12

remaining_amount = initial_amount
 result_text = “”

for month in range(1, duration + 1):
 # Apply monthly rate of return
 remaining_amount *= (1 + rate_of_return / 12)
 # Subtract withdrawal amount
 remaining_amount -= withdrawal_amount

# Break if the amount goes negative
 if remaining_amount < 0:
 result_text += f”Month {month}: Insufficient funds!\n”
 break

result_text += f”Month {month}: Remaining Amount: ₹{remaining_amount:.2f}\n”

result_label.config(text=result_text)
 except ValueError:
 messagebox.showerror(“Error”, “Please enter valid numbers in all fields.”)

# Create the main window
root = tk.Tk()
root.title(“SWP Calculator”)

# Labels and Entry Fields
tk.Label(root, text=”Initial Investment (₹):”).grid(row=0, column=0, padx=10, pady=10)
initial_amount_entry = tk.Entry(root)
initial_amount_entry.grid(row=0, column=1, padx=10, pady=10)

tk.Label(root, text=”Withdrawal Amount (₹):”).grid(row=1, column=0, padx=10, pady=10)
withdrawal_amount_entry = tk.Entry(root)
withdrawal_amount_entry.grid(row=1, column=1, padx=10, pady=10)

tk.Label(root, text=”Rate of Return (%):”).grid(row=2, column=0, padx=10, pady=10)
rate_of_return_entry = tk.Entry(root)
rate_of_return_entry.grid(row=2, column=1, padx=10, pady=10)

tk.Label(root, text=”Withdrawal Frequency:”).grid(row=3, column=0, padx=10, pady=10)
frequency_var = tk.StringVar(value=”Monthly”)
tk.Radiobutton(root, text=”Monthly”, variable=frequency_var, value=”Monthly”).grid(row=3, column=1, sticky=”w”)
tk.Radiobutton(root, text=”Yearly”, variable=frequency_var, value=”Yearly”).grid(row=4, column=1, sticky=”w”)

tk.Label(root, text=”Duration (Years):”).grid(row=5, column=0, padx=10, pady=10)
duration_entry = tk.Entry(root)
duration_entry.grid(row=5, column=1, padx=10, pady=10)

# Calculate Button
calculate_button = tk.Button(root, text=”Calculate”, command=calculate_swp)
calculate_button.grid(row=6, column=0, columnspan=2, pady=10)

# Result Label
result_label = tk.Label(root, text=””, justify=”left”)
result_label.grid(row=7, column=0, columnspan=2, padx=10, pady=10)

# Run the app
root.mainloop()

How It Works:

Input Fields:

  • Initial Investment: The total amount invested.
  • Withdrawal Amount: The amount to withdraw periodically.
  • Rate of Return: The expected annual rate of return.
  • Withdrawal Frequency: Monthly or Yearly.
  • Duration: The number of years for the SWP.

Calculation:

  • The app calculates the remaining balance month-by-month, considering the rate of return and withdrawals.

Output:

The remaining balance is displayed for each month until the duration ends or the balance becomes insufficient.

Requirements:

  • Python 3.x

Tkinter (usually comes pre-installed with Python)

How to Run:

Save the code in a file, e.g., swp_calculator.py.

Run the file using Python:

python swp_calculator.py

Enter the details and click “Calculate” to see the results.

This is a basic implementation. You can enhance it further by adding features like:

Graphical charts for visualization

Exporting results to a file.

Handling more complex scenarios like variable withdrawal amounts or changing rates of return.

Post a Comment

0 Comments